Technical Issue in Body Fluid Analysis

彰化基督教醫院 檢驗醫學部 郭夙峯 主任醫檢師

Contents

- Preanalytical variables
 - Specimen collection
 - Specimen handling
- Analytical variables
 - Quantitative assessment
 - Hemocytometer
 - Automated analyzer
 - Evaluation of Nucleated Cell Subtypes
 - Morphology assessment
- Postanalytical variables

Preanalytical Variables (1)

- Specimen collection procedures
 - Standardization (SOP)
- Type of collection tubes used to collect
 - Glass tubes--->cellular adherence
 - Artificially change differential cell counts
 - Especially in low protein fluids: BAL or CSF
 - Polypropylene tube is preferred

Preanalytical Variables (2)

- Type of anticoagulant (additive)
 - Additive may not required for CSF
 - Affect the enumeration of WBC and RBC
 - Using the wrong additive (synovial) could introduce artifacts
 - Interfere with the identification of cellular elements or crystals

Preanalytical Variables (3)

- The proper order of draw
 - Reduce the incidence of cellular contamination from tube to tube
 - Hemolyzed and clotted specimens are not recommended

Bronchoalveolar Lavage (BAL)

- The instillation volume
 - Typically is approximately 100-300 mL sterile saline in 20-50 mL aliquots
 - The first aliquot should be discarded
 - The other aliquots are pooled for further analysis

Quantitative Assessment (1)

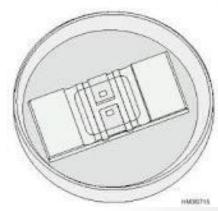
- Mix the specimen
 - Rotation on an automated mixer
 - For a maximum of 2-5 min.
 - Excessive rocking may damage cells
 - Synovial fluid must be mixed for 5-10 min.
 - Due to the viscosity of the fluid
 - Hand mix: inverting the tube 10-15 times

Quantitative Assessment (2)

Specimen dilutions

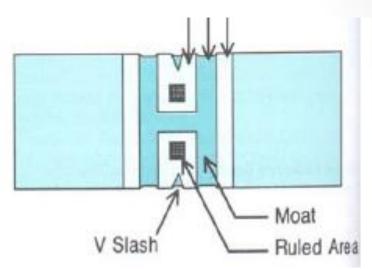
- Specimens are usually counted undiluted
 - Unless bloody or cloudy specimens
- Typical dilutions
 - Range from 1:10-1:200 or higher
 - Depending on the turbidity of the specimen
- Isotonic saline can be used for both WBC and RBC dilutions
- Bloody specimens
 - 3% acetic acid may be used to lyse RBCs
 - 0.3% hypotonic saline was used for synovial fluid

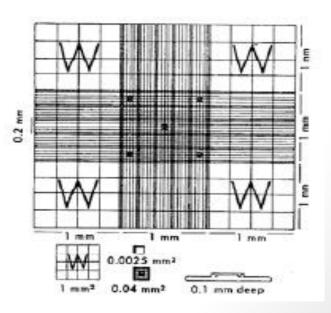
Quantitative Assessment (3)


- Hemocytometer preparation and charging
 - Cells must be counted as soon as possible
 - If the fluid has drawn back from the sides of the hemocytometer
 - The sample has begun to dry out and the counts are invalid
 - Re-mix the sample and set the hemocytometer counts up again

Quantitative Assessment (4)

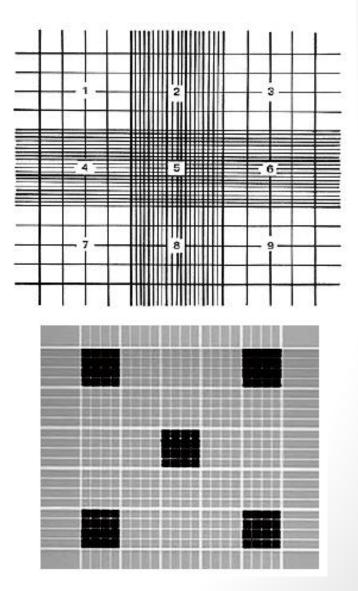
- 1. Make sure the hemocytometer it is clean and dry
- 2. Place a coverslip on hemocytometer
- 3. Place the hemocytometer in a petri dish lined with moist paper





Quantitative Assessment (5)

- 4. Fill both sides of the hemocytometer (not to overfill)
- 5. After hemocytometer loaded, allow the cells to settle for 5-10 min.
- Label the petri dish
 (Specimen identification and the set-up time)



Quantitative Assessment (6)

- Cell counting procedures
 - Place hemocytometer under microscope (10X) and adjust to see the cells
 - 2. Scan the large squares
 - Even distribution of cells
 - Cells should not overlap
 - 3. For diluted samples, a minimum of 200 cells should be counted
 - 4. Switch to hpf (40X)

Quantitative Assessment (7)

- Cell areas
 - 1. All nine squares if no dilution
 - 2. All nine squares for 1:10 dilution
 - 3. Four corner squares for 1:20 dilution (1, 3,7,9)
 - 4. Center square for 1:100 dilution (5)
 - 5. Red cell counting area for 1:200 dilution

Quantitative Assessment (8)

- Calculations
- Cells per μL
- Cells/ μ L (/microliter) = # of cells counted x dilution factor # of square mm counted x chamber depth (0.1 mm)
- where $1 \text{ mm}^3 = 1 \mu L$ (microliter)
 - Cell should be counted in duplicated
 - Laboratory should define the limit of agreement

Why Automated Body Fluid Cell Counts?

- Limitation of manual cell counts
 - Subjective
 - High interobserver variability
 - Poor reproducibility
 - Difficult to distinguish WBC from other nucleated cells
- Benefit of automation
 - Improvements in accuracy and precision
 - Laboratory efficiency
 - Cost-effectiveness?

Validation of Automated Method for Body Fluid (BF) Cell Counts

- BF performed in the usual CBC mode of cell counter is inaccurate
- Statement of intended use by manufactures
 - Indicate the types of BF validated on the analyzer
 - Analytical measurement range for each BF
- For BF not included in the manufacturer's statements
 - Considered as lab-developed method
 - Require more extensive validation

Method Verification/Validation

- Accuracy
- Precision
- Sample carry-over
- Linearity
- Lower limit of quantification (analytical sensitivity)
- Analytical specificity
- Reportable range
- Reference intervals

Accuracy

- Compared with the reference (manual) method
 - A fundamentally flawed approach
 - Pearson correlation is not suitable
 - Spearman correlation and Bland-Altman plot are more appropriate
- No well-defined value for an acceptable correlation
- Another challenge
 - Sample integrity deteriorates over time

Limit of Quantitation (LOQ) and Specificity

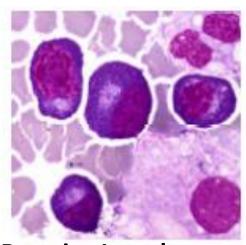
- LOQ : defined as the lowest cell count with C.V.<20%
 - 10-30 WBCs/uL
 - RBC>100/uL
- Known substances might interfere with the analysis
 - High viscosity
 - Crystals
 - Microorganisms

Validation Automated Methods for Leukocyte Differential Counting

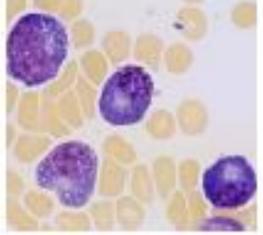
- Most validated vs. manual differential count
 - Preferably performed on cytospin smears
 - Cell can be concentrated 20X fold
 - Combined cell categories must be taken into account
- Limitation of manual DC in BF
 - Imprecision & subjectively
 - Time delays
 - Cytospin affect cell recovery & proportion
- Microscopic is still indicated for malignant cell detection

Specific Issues Related to Different Body Fluid Types by Automation (1)

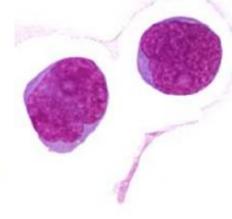
- CSF
 - The greatest challenges for automation
 - Extremely low cell counts
 - Showed a positive bias to manual counting
 - Most published reference ranges were established by manual methods
 - RBC count
 - Intracranial hemorrhage vs. traumatic tap
 - Some pediatric oncologist use 10 RBCs/uL as an indicator of PB contamination


Specific Issues Related to Different Body Fluid Types by Automation (2)

- Serous fluids
 - Mesothelial cells are normally present and can be numerous
 - Total nucleated cell (TNC) vs. Leukocyte
 - Differential counts (DC)
 - Include mesothelial cells in 2-part DC as MNs
 - Classification mesothelial cell as a category
 - Combination of mesothelial cell and histiocyte (M+H)
 - Reference ranges are generally not reported


Specific Issues Related to Different Body Fluid Types by Automation (3)

- Synovial fluids
 - Cell counts are generally higher
 - Pretreatment with hyaluronidase
 - Prevent clogging of the flow cell in analyzer
 - Potential interference with automation
 - Crystal
 - Fat globules
 - Microorganisms


Evaluation of Nucleated Cell Subtypes (Hematopoietic Cells)


Reactive Lymphocytes

Plasma Cells

Blast Cells

Lymphoma Cells

Sample Processing/Techniques to Enhance Slide Quality

- Prepare slide as soon as possible (<4 hrs)
 - Especially for BF with low protein
- Washing cell before cytocentrifugation
 - Especially serous fluid with fibrin
- Viscous synovial fluids can be liquefied
 - Adding 400 units hyaluronidase to 1 mL of fluid
 - Incubating at 37°C for 10 min.
- Cellular or bloody samples need to be diluted before cytocentrifugation
- 22% albumin can enhance cell adherence and reduce cell smudging in CSF

Postanalytical Variables

- Specimen & smear storage
- Physician or supervisor review
- Critical value notification
 - Blast in CSF
 - Presence of malignant cell
 - Microorganism found in aseptic fluids
- Morphologic observation assessment
- Microscopic result comparison
 - Especially when a diagnosis of malignancy is suspected

Thanks for Your Attention !